Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 13(6): e13074, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998164

RESUMO

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Assuntos
Transplante de Coração , Miócitos Cardíacos , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático , Humanos , Mitocôndrias , Mutação , Miócitos Cardíacos/metabolismo , Proteômica , Doadores de Tecidos
2.
Eur J Pharmacol ; 904: 174170, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984298

RESUMO

Diastolic dysfunction is a major feature of hypertrophic cardiomyopathy (HCM). Data from patient tissue and animal models associate increased Ca2+ sensitivity of myofilaments with altered Na+ and Ca2+ ion homeostasis in cardiomyocytes with diastolic dysfunction. In this study, we tested the acute effects of ouabain on ventricular myocytes of an HCM mouse model. The effects of ouabain on contractility and Ca2+ transients were tested in intact adult mouse ventricular myocytes (AMVMs) of Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Concentration-response assessment of contractile function revealed low sensitivity of AMVMs to ouabain (10 µM) compared to literature data on human cardiomyocytes (100 nM). Three hundred µM ouabain increased contraction amplitude (WT ~1.8-fold; KI ~1.5-fold) and diastolic intracellular Ca2+ in both WT and KI (+12-18%), but further decreased diastolic sarcomere length in KI cardiomyocytes (-5%). Western Blot analysis of whole heart protein extracts revealed 50% lower amounts of Na+/K+ ATPase (NKA) in KI than in WT. Ouabain worsened the diastolic phenotype of KI cardiomyocytes at concentrations which did not impair WT diastolic function. Ouabain led to an elevation of intracellular Ca2+, which was poorly tolerated in KI showing already high cytosolic Ca2+ at baseline due to increased myofilament Ca2+ sensitivity. Lower amounts of NKA in KI could amplify the need to exchange excessive intracellular Na+ for Ca2+ and thereby explain the general tendency to higher diastolic Ca2+ in KI.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Diástole/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Ouabaína/toxicidade , Sarcômeros/efeitos dos fármacos , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Contração Miocárdica/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Sístole/efeitos dos fármacos
3.
J Biol Chem ; 295(45): 15342-15365, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32868295

RESUMO

The contraction and relaxation of the heart is controlled by stimulation of the ß1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of ß1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Oxidantes/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Animais , Bovinos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diamida/farmacologia , Humanos , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Compostos Nitrosos/farmacologia , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Coelhos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
4.
Anesthesiology ; 128(6): 1175-1186, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547406

RESUMO

BACKGROUND: Systemic toxicity of local anesthetics is predominantly complicated by their myocardial toxicity. Especially long-acting local anesthetics exert a negative inotropic effect that has been described at lower concentrations than defined for blockade of myocardial ion channels. We evaluated the negative inotropic effect of bupivacaine at a concentration described for clinical toxicity testing the hypothesis that negative inotropy is a result of reduced Ca sensitivity rather than blockade of ion channels. METHODS: We simultaneously measured force development and action potentials in guinea pig right papillary muscles (n = 5 to 7). L-type Ca currents (n = 8 to 16) and Ca transients (n = 10 to 11) were measured in isolated cardiomyocytes. Sensitivity of myofilaments to Ca was assessed in skinned fibers (n = 10). Potential effects of bupivacaine on 3',5'-cyclic adenosine monophosphate concentrations were measured using Förster Resonance Energy Transfer (n = 12 to 14) microscopy. RESULTS: Bupivacaine reduced force in a concentration-dependent manner from 173 ± 119 µN at baseline to 28 ± 13 µN at 300 µM (mean ± SD). At concentrations giving half-maximum negative inotropic effects (5 µM), the maximum upstroke velocity of action potentials, as a surrogate of sodium channel activity, was unaffected. Maximum positive inotropic effects of isoprenaline were also reduced to 50%. Neither basal nor isoprenaline-induced 3',5'-cyclic adenosine monophosphate accumulation, L-type Ca currents, or Ca transients were affected by 5 µM bupivacaine, but this concentration significantly decreased Ca sensitivity of myofilaments, changing the negative logarithm of the half-maximum effective Ca concentrations from 5.66 to 5.56 -log[M]. CONCLUSIONS: We provide evidence that the negative inotropic effect of bupivacaine may be caused mainly by a reduction in myofilament sensitivity to Ca.


Assuntos
Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Cálcio/metabolismo , Contração Miocárdica/fisiologia , Receptores Adrenérgicos beta/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Cobaias , Masculino , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos
5.
Mol Ther Nucleic Acids ; 7: 475-486, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624223

RESUMO

Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM) carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5' or 3' pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1) the feasibility of trans-splicing, although with low efficiency, and (2) efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.

6.
Toxicol Sci ; 158(1): 164-175, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453742

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) may serve as a new assay for drug testing in a human context, but their validity particularly for the evaluation of inotropic drug effects remains unclear. In this blinded analysis, we compared the effects of 10 indicator compounds with known inotropic effects in electrically stimulated (1.5 Hz) hiPSC-CM-derived 3-dimensional engineered heart tissue (EHT) and human atrial trabeculae (hAT). Human EHTs were prepared from iCell hiPSC-CM, hAT obtained at routine heart surgery. Mean intra-batch variation coefficient in baseline force measurement was 17% for EHT and 49% for hAT. The PDE-inhibitor milrinone did not affect EHT contraction force, but increased force in hAT. Citalopram (selective serotonin reuptake inhibitor), nifedipine (LTCC-blocker) and lidocaine (Na+ channel-blocker) had negative inotropic effects on EHT and hAT. Formoterol (beta-2 agonist) had positive lusitropic but no inotropic effect in EHT, and positive clinotropic, lusitropic, and inotropic effects in hAT. Tacrolimus (calcineurin-inhibitor) had a negative inotropic effect in EHTs, but no effect in hAT. Digoxin (Na+-K+-ATPase-inhibitor) showed a positive inotropic effect only in EHTs, but no effect in hAT probably due to short incubation time. Ryanodine (ryanodine receptor-inhibitor) reduced contraction force in both models. Rolipram and acetylsalicylic acid showed noninterpretable results in hAT. Contraction amplitude and kinetics were more stable over time and less variable in hiPSC-EHTs than hAT. HiPSC-EHT faithfully detected cAMP-dependent and -independent positive and negative inotropic effects, but limited beta-2 adrenergic or PDE3 effects, compatible with an immature CM phenotype.


Assuntos
Átrios do Coração/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual , Cálcio/metabolismo , Átrios do Coração/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio , Miócitos Cardíacos/metabolismo , Controle de Qualidade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA